Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1044-1051, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621911

RESUMO

The animal and cell models were used in this study to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in inhibiting colon cancer progression and enhancing the efficacy of 5-fluorouracil(5-FU) by regulating hypoxia-inducible factors and tumor stem cells. The animal model was established by subcutaneous transplantation of colon cancer HCT116 cells in nude mice, and 24 successfully modeled mice were randomized into model, 5-FU, HQEZ, and 5-FU+HQEZ groups. The tumor volume was measured every two days. Western blot was employed to measure the protein levels of epidermal growth factor receptor(EGFR), dihydropyrimidine dehydrogenase(DPYD), and thymidylate synthase(TYMS), the key targets of the hypoxic core region, as well as the hypoxia-inducible factors HIF-1α and HIF-2α and the cancer stem cell surface marker CD133 and SRY-box transcription factor 2(SOX2). The results of animal experiments showed that HQEZ slowed down the tumor growth and significantly increased the tumor inhibition rate of 5-FU. Compared with the model group, HQEZ significantly down-regulated the protein levels of EGFR and DPYD, and 5-FU+HQEZ significantly down-regulated the protein levels of EGFR and TYMS in tumors. Compared with the model group, HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, SOX2, and CD133 in the hypoxic core region. Compared with the 5-FU group, 5-FU+HQEZ lowered the protein levels of HIF-1α, HIF-2α, and SOX2. The cell experiments showed that the protein le-vels of HIF-1α and HIF-2α in HCT116 cells elevated significantly after low oxygen treatment. Compared with 5-FU(1.38 µmol·L~(-1)) alone, HQEZ(40 mg·mL~(-1)) and 5-FU+HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, and TYMS. In conclusion, HQEZ can inhibit the expression of hypoxia-responsive molecules in colon cancer cells and reduce the properties of cancer stem cells, thereby enhancing the therapeutic effect of 5-FU on colon cancer.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias do Colo , Camundongos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos Nus , Fluoruracila/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Hipóxia , Receptores ErbB , Células-Tronco Neoplásicas , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular Tumoral
2.
Biomolecules ; 14(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38672405

RESUMO

Curcumae Rhizoma, a traditional Chinese medicine with a wide range of pharmacological activities, is obtained from the dried rhizomes of Curcuma phaeocaulis VaL., Curcuma kwangsiensis S. G. Lee et C. F. Liang, and Curcuma wenyujin Y. H. Chen et C. Ling. Sesquiterpenoids and curcuminoids are found to be the main constituents of Curcumae Rhizoma. Sesquiterpenoids are composed of three isoprene units and are susceptible to complex transformations, such as cyclization, rearrangement, and oxidation. They are the most structurally diverse class of plant-based natural products with a wide range of biological activities and are widely found in nature. In recent years, scholars have conducted abundant studies on the structures and pharmacological properties of components of Curcumae Rhizoma. This article elucidates the chemical structures, medicinal properties, and biological properties of the sesquiterpenoids (a total of 274 compounds) isolated from Curcumae Rhizoma. We summarized extraction and isolation methods for sesquiterpenoids, established a chemical component library of sesquiterpenoids in Curcumae Rhizoma, and analyzed structural variances among sesquiterpenoids sourced from Curcumae Rhizoma of diverse botanical origins. Furthermore, our investigation reveals a diverse array of sesquiterpenoid types, encompassing guaiane-type, germacrane-type, eudesmane-type, elemane-type, cadinane-type, carane-type, bisabolane-type, humulane-type, and other types, emphasizing the relationship between structural diversity and activity. We hope to provide a valuable reference for further research and exploitation and pave the way for the development of new drugs derived from medicinal plants.


Assuntos
Curcuma , Rizoma , Sesquiterpenos , Curcuma/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Rizoma/química , Humanos , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia
3.
Anal Bioanal Chem ; 416(7): 1647-1655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305859

RESUMO

Target-based drug discovery technology based on cell membrane targets has gained significant traction and has been steadily advancing. However, current methods still face certain limitations that need to be addressed. One of the challenges is the laborious preparation process of screening materials, which can be time-consuming and resource-intensive. Additionally, there is a potential issue of non-specific adsorption caused by carrier materials, which can result in false-positive results and compromise the accuracy of the screening process. To address these challenges, this paper proposes a target-based cell membrane affinity ultrafiltration technology for active ingredient discovery in natural products. In this technique, the cell membranes of human lung adenocarcinoma epithelial cells (A549) with a high expression of epidermal growth factor receptor (EGFR) were incubated with candidate drugs and then transferred to an ultrafiltration tube. Through centrifugation, components that interacted with EGFR were retained in the ultrafiltration tube as "EGFR-ligand" complex, while the components that did not interact with EGFR were separated. After thorough washing and eluting, the components interacting with EGFR were dissociated and further identified using LC-MS, enabling the discovery of bioactive compounds. Moreover, the target-based cell membrane affinity ultrafiltration technology exhibited commendable binding capacity and selectivity. Ultimately, this technology successfully screened and identified two major components from the Curcumae Rhizoma-Sparganii Rhizoma (CS) herb pair extracts, which were further validated for their potential anti-tumor activity through pharmacological experiments. By eliminating the need for laborious preparation of screening materials and the potential non-specific adsorption caused by carriers, the development of target-based cell membrane affinity ultrafiltration technology provides a simplified approach and method for bioactive compounds discovery in natural sources.


Assuntos
Produtos Biológicos , Ultrafiltração , Humanos , Ultrafiltração/métodos , Produtos Biológicos/farmacologia , Tecnologia , Receptores ErbB , Membrana Celular
4.
J Ethnopharmacol ; 322: 117555, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38110130

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The herb pair Astragali Radix (AR) and Curcumae Rhizoma (vinegar-processed, VPCR), derived from the traditional Chinese medicine (TCM) text 'Yixuezhongzhongcanxilu', have long been used to treat gastrointestinal diseases, notably colitis-associated colorectal cancer (CAC). Hedysari Radix (HR), belonging to the same Leguminosae family as AR but from a different genus, is traditionally used as a substitute for AR when paired with VPCR in the treatment of CAC. However, the optimal compatibility ratio for HR-VPCR against CAC and the underlying mechanisms remain unclear. AIM OF THE STUDY: To investigate the optimal compatibility ratio and underlying mechanisms of HR-VPCR against CAC using a combination of comparative pharmacodynamics, network pharmacology, and experimental verification. MATERIALS AND METHODS: The efficacy of different compatibility ratios of HR-VPCR against CAC was evaluated using various indicators, including the body weight, colon length, tumor count, survival rate, disease activity index (DAI) score, Haemotoxylin and Eosin (H&E) pathological sections, inflammation cytokines (IL-1ß, IL-6, IL-10, TNF-α), tumor markers (K-Ras, p53), and intestinal permeability proteins (claudin-1, E-cadherin, mucin-2). Then, the optimal compatibility ratio of HR-VPCR against CAC was determined based on the fuzzy matter-element analysis by integrating the above indicators. After high-performance liquid chromatography (HPLC) analysis for the optimal compatibility ratio of HR-VPCR, potential active components of HR-VPCR were identified by TCMSP and the previous bibliographies. Swiss Targets and GeneCards were adopted to predict the targets of the active components and the targets of CAC, respectively. Then, the common targets of HR-VPCR against CAC were obtained by Venn analysis. PPI networks were constructed in STRING. GO and KEGG enrichments were visualized by the David database. Finally, the predicted pathway was experimentally validated via Western blot. RESULTS: Various compatibility ratios of HR-VPCR demonstrated notable therapeutic effects to some extent, evidenced by improvements in body weight, colon length, tumor count, pathological symptoms (DAI score), colon and organ indexes, survival rate, and modulation of inflammation factors (IL-1ß, IL-6, IL-10, TNF-α), as well as tumor markers (K-Ras, p53), and down-regulation of intestinal permeability proteins (claudin-1, E-cadherin, mucin-2) in CAC mice. Among these ratios, the ratio 4:1 represents the optimal compatibility ratio by the fuzzy matter-element analysis. Thirty active components of HR-VPCR were carefully selected, targeting 553 specific genes. Simultaneously, 2022 targets associated with CAC were identified. 88 common targets were identified after generating a Venn plot. Following PPI network analysis, 29 core targets were established, with AKT1 ranking highest among them. Further analysis via GO and KEGG enrichment identified the PI3K-AKT signaling pathway as a potential mechanism. Experimental validation confirmed that HR-VPCR intervention effectively reversed the activated PI3K-AKT signaling pathway. CONCLUSIONS: The optimal compatibility ratio for the HR-VPCR herb pair in alleviating CAC is 4:1. HR-VPCR exerts its effects by alleviating intestinal inflammation, improving intestinal permeability, and regulating the PI3K-AKT signaling pathway.


Assuntos
Astrágalo , Neoplasias Associadas a Colite , Medicamentos de Ervas Chinesas , Animais , Camundongos , Interleucina-10 , Mucina-2 , Farmacologia em Rede , Claudina-1 , Interleucina-6 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Necrose Tumoral alfa , Proteína Supressora de Tumor p53 , Biomarcadores Tumorais , Peso Corporal , Caderinas , Inflamação/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
5.
J Ethnopharmacol ; 319(Pt 3): 117199, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37844744

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: An herbal pair is a classic form of clinical dispensing in Traditional Chinese Medicine (TCM), often used in prescriptions to enhance the effect or reduce potential side effects. It is the smallest component unit of Chinese medicine prescription and an essential bridge between Chinese medicine and prescription. Curcumae Rhizoma (called Ezhu in Chinese) is a representative TCM herb that promotes blood circulation and removes blood stasis. It has been used in Chinese medicine for thousands of years. Ezhu is generally used in clinical applications as a part of a "drug pair" to treat heartburn, stomach pain, tumour, amenorrhea and abdominal pain caused by blood stasis, qi stagnation and injury. AIMS OF THE REVIEW: This review aims to summarize the latest and comprehensive situation of the biological activity and clinical application of drug pairs containing Ezhu, find the law of Ezhu compatibility application, and discuss the rationalization of Ezhu drug compatibility. For Ezhu, herb pairs to provide a theoretical basis for clinical research in TCM and serve as a research foundation for developing new drugs. MATERIALS AND METHODS: Using a self-built prescription database and Apriori algorithm for association rule mining. A systematic search for studies on herb pairs containing Ezhu was carried out by using the internet databases of PubMed, CNKI, Baidu Scholar, Google Scholar and Web of Science, as well as other relevant textbooks, reviews and documents (e.g. Chinese Pharmacopoeia, 2020 edition, Chinese herbal classic books and PhD and MSc theses, etc.). Among them with keywords including "Curcumae Rhizoma", "Ezhu", "herb pairs", "clinical application", etc. and their combinations. Moreover, the t-copula function was used to analyse the dose-coupling effect of five drug pairs, including Ezhu. RESULTS: The preliminary statistical analysis retrieved Ezhu prescriptions from self-built prescription database and internet databases. The results showed that the compatibility frequency of Ezhu with the other five Chinese medicines was high. Most of these selected herbal combinations are used to treat internal diseases. In this paper, the progress of the ethnopharmacology of Ezhu was reviewed, emphasizing the changes in bioactive components and compatibility of Chinese traditional medicine combinations such as Ezhu and Astragalus Curcuma (Sparganium stoloniferum Buch. -Ham; called Sanleng in Chinese), Ezhu and Astragali Radix (Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao, Astragalus membranaceus (Fisch.) Bge.; called Huangqi in Chinese). Some other varieties, such as Ezhu and Rhizoma Chuanxiong (Ligusticum chuanxiong Hort.; called Chuanxiong in Chinese), Trionycis Carapax (Trionyx sinensis Wiegmann; called Biejia in Chinese), and Coptidis Rhizoma (Coptis chinensis Franch., Coptis deltoidea C. Y. Cheng et Hsiao, Coptis teeta Wall.; called Huanglian in Chinese), are also recorded in ancient books but rarely researched. The dose of Ezhu is strongly correlated with the amount of Sanleng, Huangqi, Biejia, Chuanxiong and Huanglian, respectively. Furthermore, there was a positive correlation between them. CONCLUSIONS: The bioactive components and compatibility effects of Ezhu herb pairs were studied in detail using data mining and t-copula function analysis. Ezhu and Astragalus Curcuma (Sanleng) mainly treat gynecological disorders by activating blood circulation and relieving congestion. Ezhu and Astragali Radix (Huangqi) drug pair and Ezhu and Trionycis Carapax (Biejia) drug pair are all commonly used in the clinical treatment of tumors, the former is mainly used clinically for the treatment of digestive tract-related inflammation and tumors, liver cancer and gynecological tumors, and the latter is commonly used for the treatment of malignant tumors, such as liver cancer and mammary cancer.


Assuntos
Coptis , Neoplasias Hepáticas , Feminino , Humanos , Rizoma , Raízes de Plantas
6.
Zhongguo Zhong Yao Za Zhi ; 48(18): 5056-5067, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802848

RESUMO

This study aims to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in the treatment of gastric cancer based on network pharmacology. Further, the SGC7901 cell model of gastric cancer was employed to validate the efficacy and key targets of the herb pair. Firstly, the CCK-8 assay was employed to evaluate the direct effect of HQEZ on the proliferation of gastric cancer SGC7901 cells. Then, network pharmacology methods were employed to investigate the active ingredients, key targets, and key signaling pathways involved in the treatment of gastric cancer with HQEZ. The results showed that HQEZ contained 18 potential active ingredients, such as quercetin, naringenin, and curcumin. The results of gene ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment suggested that the main targets of HQEZ in treating gastric cancer were involved in the regulation of protein serine/threonine kinase activity, activation of mitogen-activated protein kinase(MAPK) activity, cysteine-type endopeptidase activity, and negative regulation of protein serine/threonine kinase activity. The hypoxia-inducible factor-1(HIF-1) signaling pathway, ATP-binding cassette(ABC) transporters, cytochrome P450-mediated metabolism of xenobiotics, p53 signaling pathway, and cell apoptosis were key signaling pathways of HQEZ in treating gastric cancer. The cell experiments demonstrated that HQEZ significantly downregulated the expression of ATP-binding cassette subfamily B member 1(ABCB1), epidermal growth factor receptor(EGFR), phosphorylated serine/threonine kinase(p-AKT), hypoxia inducible factor 1 subunit alpha(HIF1A), B-cell lymphoma 2(BCL2), breast cancer susceptibility protein 1(BRCA1), DNA polymerase theta(POLH), ribonucleotide reductase M1(RRM1), and excision repair cross-complementation group 1(ERCC1), and upregulated the expression of tumor protein P53(TP53) and cysteinyl aspartate-specific proteinase(CAPS3). Finally, a multivariate COX regression model was adopted to study the relationship between gene expression and clinical information data of gastric cancer patients in the TCGA database, which demonstrated that the key targets of HQEZ were associated with the poor prognosis in gastric cancer patients. Further feature selection using the LASSO algorithm showed that EGFR, HIF1A, TP53, POLH, RRM1, and ERCC1 were closely associated with the survival of gastric can-cer patients. In conclusion, HQEZ regulates the expression of genes involved in DNA repair, survival, and apoptosis in gastric cancer cells via multiple targets and pathways, assisting the treatment of gastric cancer.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Proteína Supressora de Tumor p53 , Farmacologia em Rede , Receptores ErbB , Proteínas Serina-Treonina Quinases , Serina , Trifosfato de Adenosina , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia
7.
Int Rev Neurobiol ; 172: 303-319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37833016

RESUMO

Glioma is the most common primary central nervous tumor and its malignant and high recurrence rate are seriously threatening patient's life. The prognosis of glioma patients is still poor with a variety of modern treatments. Traditional Chinese medicine (TCM) is widely used in the adjuvant treatment or alternative medicine of glioma. Curcumae Rhizoma is one of the most commonly used in traditional Chinese medicine prescriptions for its anti-tumor characteristics. There are also many studies that reveals the anti-tumor effect of its active ingredients and some of which have been made into drugs and have been used in clinical practice. This review summarizes the new research progress on Curcumae Rhizoma for the treatment of glioma in recent years.


Assuntos
Medicamentos de Ervas Chinesas , Glioma , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Curcuma , Rizoma , Glioma/tratamento farmacológico
8.
Front Pharmacol ; 14: 1229963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719857

RESUMO

Curcumae Longae Rhizoma (turmeric), Curcumae Radix and Curcumae Rhizoma are derived from the Curcuma species, and have gradually become three of the most commonly used medicinal herbs in China due to their different origins, processing methods and medicinal part. These three herbs have certain similarities in morphology, chemical composition, and pharmacological effects. All three of these herbs contain curcuminoids and volatile oil compounds, which exhibit anti-inflammatory, anti-tumor, antioxidant, and neuroprotective properties, although modern clinical applications have their own requirements. At present, there is no systematic guidelines for the clinical application of these three of Curcuma species; consequently, there is a high risk of unwanted phenomena associated with the mixing and indiscriminate use of these herbs. In this review, we focus predominantly on morphology, chemical composition, and the pharmacological activity of these three Curcuma herbs and summarize the current status of research in this field. Our goal is to provide a better understanding of clinical value of these Curcuma species so that we can provide reference guidelines for their further development, utilization and rational clinical application.

9.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3199-3206, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37382003

RESUMO

Based on the Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3) signaling pathway, this study investigated the effect of medicated serum of Sparganii Rhizoma(SR) and Curcumae Rhizoma(CR) on the proliferation, apoptosis, migration, and secretion of inflammatory factors of ectopic endometrial stromal cells(ESCs). Specifically, human ESCs were primary-cultured. The effect of different concentration(5%, 10%, 20%) of SR-, CR-, and SR-CR combination-medicated serum, and AG490 solution(50 µmol·L~(-1)) on the proliferation of ESCs was detected by methyl thiazolyl tetrazolium(MTT) assay, and the optimal dose was selected accordingly for further experiment. The cells were classified into normal serum(NS) group, SR group(10%), CR group(10%), combination(CM) group(10%), and AG490 group. The apoptosis level of ESCs was detected by flow cytometry, and the migration ability was examined by wound healing assay. The secretion of interleukin(IL)-1ß, IL-6, and tumor necrosis factor(TNF)-α was determined by enzyme-linked immunosorbent assay(ELISA). The protein levels of cysteinyl aspartate specific protei-nase-3(caspase-3), B-cell lymphoma(Bcl-2), and Bcl-2-associated X protein(Bax) and the levels of phosphorylated(p)-JAK2 and p-STAT3 were detected by Western blot. The results showed that the viability of ESCs cells was lowered in the administration groups compared with the blank serum group(P<0.01), especially the 10% drug-medicated serum, which was selected for further experiment. The 10% SR-medicated serum, 10% CR-medicated serum, and 10% CM-medicated serum could increase the apoptosis rate(P<0.01), up-regulate the protein expression of caspase-3 and Bax in cells(P<0.05 or P<0.01), down-regulate the expression of Bcl-2(P<0.01), decrease the cell migration rate(P<0.05 or P<0.01), and reduce the secretion levels of IL-1ß, IL-6, and TNF-α(P<0.05 or P<0.01), and levels of p-JAK2 and p-STAT3(P<0.05 or P<0.01). Compared with the SR and CR groups, CM group showed low cell viability(P<0.01), high protein expression of caspase-3 and Bax(P<0.05 or P<0.01), and low protein expression of Bcl-2 and p-JAK2(P<0.05). After incubation with CM, the apoptosis rate was higher(P<0.05) and the migration rate was lower(P<0.01) than that of the CR group. The p-STAT3 protein level of CM group was lower than that of the RS group(P<0.05). The mechanism of SR, CR, and the combination underlying the improvement of endometriosis may be that they blocked JAK2/STAT3 signaling pathway, inhibited ESC proliferation, promoted apoptosis, weakened cell migration, and reduced the secretion of inflammatory factors. The effect of the combination was better than that of RS alone and CR alone.


Assuntos
Interleucina-6 , Janus Quinase 2 , Feminino , Humanos , Caspase 3 , Proteína X Associada a bcl-2 , Interleucina-6/genética , Apoptose , Transdução de Sinais , Proliferação de Células , Fator de Transcrição STAT3/genética
10.
Phytomedicine ; 114: 154810, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37075623

RESUMO

BACKGROUND: Breast cancer is the most prevalent cancer worldwide, with high morbidity and mortality. Despite great advances in the therapeutic strategies, the survival rate in the past decades of patients with breast cancer remains unsatisfactory. Growing evidence has demonstrated that Curcumae Rhizoma, called Ezhu in Chinese, showed various pharmacological properties, including anti-bacterial, anti-oxidant, anti-inflammatory and anti-tumor activities. It has been widely used in Chinese medicine to treat many types of human cancer. PURPOSE: To comprehensively summarize and analyze the effects of active substances in Curcumae Rhizoma on breast cancer malignant phenotypes and the underlying mechanisms, as well as discuss its medicinal value and future perspectives. METHOD: We used "Curcumae Rhizoma" or the name of crude extracts and bioactive components in Curcumae Rhizoma in combination with "breast cancer" as key words. Studies focusing on their anti-breast cancer activities and mechanisms of action were extracted from Pubmed, Web of Science and CNKI databases up to October 2022. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS: Crude extracts and 7 main bioactive phytochemicals (curcumol, ß-elemene, furanodiene, furanodienone, germacrone, curdione and curcumin) isolated from Curcumae Rhizoma have shown many anti-breast cancer pharmacological properties, including inhibiting cell proliferation, migration, invasion and stemness, reversing chemoresistance, and inducing cell apoptosis, cycle arrest and ferroptosis. The mechanisms of action were involved in regulating MAPK, PI3K/AKT and NF-κB signaling pathways. In vivo and clinical studies demonstrated that these compounds exhibited high anti-tumor efficacy and safety against breast cancer. CONCLUSION: These findings provide strong evidence that Curcumae Rhizoma acts as a rich source of phytochemicals and has robust anti-breast cancer properties.


Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , Humanos , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Fosfatidilinositol 3-Quinases , Curcuma/química , Rizoma/química , Transdução de Sinais
11.
Zhongguo Zhong Yao Za Zhi ; 48(3): 736-743, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872237

RESUMO

This study aims to investigate the effect of Astragali Radix-Curcumae Rhizoma(AC) combination on the proliferation, migration, and invasion of colon cancer HT-29 cells based on epithelial-mesenchymal transition(EMT). HT-29 cells were respectively treated with 0, 3, 6 and 12 g·kg~(-1) AC-containing serum for 48 h. The survival and growth of cells were measured by thiazole blue(MTT) colorimetry, and the proliferation, migration, and invasion of cells were detected by 5-ethynyl-2'-deoxyuridine(EdU) test and Transwell assay. Cell apoptosis was examined by flow cytometry. The BALB/c nude mouse model of subcutaneous colon cancer xenograft was established, and then model mice were classified into blank control group, 6 g·kg~(-1) AC group, and 12 g·kg~(-1) AC group. The tumor weight and volume of mice were recorded, and the histopathological morphology of the tumor was observed based on hematoxylin-eosin(HE) staining. The expression of apoptosis-associated proteins B-cell lymphoma-2-associated X protein(Bax), cysteine-aspartic acid protease-3(caspase-3), and cleaved caspase-3, and EMT-associated proteins E-cadherin, MMP9, MMP2 and vimentin in HT-29 cells and mouse tumor tissues after the treatment of AC was determined by Western blot. The results showed that cell survival rate and the number of cells at proliferation stage decreased compared with those in the blank control group. The number of migrating and invading cells reduced and the number of apoptotic cells increased in the administration groups compared with those in the blank control group. As for the in vivo experiment, compared with the blank control group, the administration groups had small tumors with low mass and shrinkage of cells and karyopycnosis in the tumor tissue, indicating that the AC combination may improve EMT. In addition, the expression of Bcl2 and E-cadherin increased and the expression of Bax, caspase-3, cleaved caspase-3, MMP9, MMP2, and vimentin decreased in HT-29 cells and tumor tissues in each administration group. In summary, the AC combination can significantly inhibit the proliferation, invasion, migration, and EMT of HT-29 cells in vivo and in vitro and promote the apoptosis of colon cancer cells.


Assuntos
Neoplasias do Colo , Metaloproteinase 2 da Matriz , Humanos , Animais , Camundongos , Caspase 3 , Metaloproteinase 9 da Matriz , Vimentina , Células HT29 , Proteína X Associada a bcl-2 , Proliferação de Células
12.
J Ethnopharmacol ; 305: 116111, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36592822

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Curcumae Rhizoma-Sparganii Rhizoma (CR-SR) is a classic herbal pair to promote blood circulation and remove blood stasis in ancient China. However, the molecular mechanism is still unclear. AIM OF STUDY: To screen out the anti-liver fibrosis active ingredients in CR-SR. Moreover, preliminary exploration the molecular mechanism of CR-SR to ameliorates liver fibrosis. MATERIALS AND METHODS: In this research, plant taxonomy has been confirmed in the "The Plant List" database (www.theplantlist.org). The chemical components of CR-SR were analysed by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS). "Component-Target-Pathway-Disease" network of CR-SR components were built by network pharmacology. Then, the interaction between primary components and predicted protein targets based on network pharmacology were validated by molecular docking. The pharmacological actions of CR-SR were verified by blood biochemical indexes, histopathologic examination of CCL4 induced rats' model. The core protein targets were verified by Western blot. The effects of screened active components by molecular autodocking were verified by HSC-T6 cell experiment. RESULTS: The result shows that 57 chemical constituents in CR-SR herbal pair were identified by UPLC-Q/TOF-MS, in which, 27 compounds were closely connected with liver fibrosis related protein targets. 55 protein targets screened out by "component-target-pathway-disease network" maybe the underlying targets for CR-SR to cure liver fibrosis. Moreover, the 55 protein targets are mainly related to RNA transcription, apoptosis, and signal transduction. The molecular autodocking predicted that ten components can bond well with PTGS2 and RELA protein targets. The blood biochemical indexes, histopathologic examination of CCL4 induced rats experiment showed that CR-SR has well intervention effect of liver fibrosis. The Western blot analysis indicated that CR-SR could significantly inhibit RELA, PTGS2, IL-6, SRC, and AKT1 protein expression to exert the anti-fibrosis effect. The HSC-T6 cell experiment indicated that both formononetin (FNT) and curdione could significantly inhibit the activation of HSC and reduce the expression of PTGS2, and p-AKT1 which was accordance with the molecular autodocking results. CONCLUSION: This study proved the molecular mechanism of CR-SR multi-component and multi-target anti-liver fibrosis effect through mass spectrometry, network pharmacology, and western blotting technology. The research provides a theoretical evidence for the development and utilization of CR-SR herbal pair.


Assuntos
Medicamentos de Ervas Chinesas , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/análise , Simulação de Acoplamento Molecular , Farmacologia em Rede , Ciclo-Oxigenase 2 , Rizoma/química
13.
J Ethnopharmacol ; 300: 115751, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162550

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Myocardial fibrosis leads to cardiac remodeling and dysfunction. Curcumae Rhizoma has been utilized in clinical trials to treat a variety of cardiovascular illnesses, although its role in myocardial fibrosis is unknown. AIM OF THE STUDY: The purpose of current study was to explore the potential mechanism action and anti-myocardial fibrosis effects of treatment with Curcumae Rhizoma. MATERIALS AND METHODS: The chemical components in the aqueous extract from Curcumae Rhizoma were identified using GC-MS analysis. A prediction network describing the relationship between Curcumae Rhizoma and MF was established based on information collected from multiple databases. Functional enrichment analysis was performed to investigate the specific functions and pathways involved in the candidate Curcumae Rhizoma targets acting on MF, which were further validated by vivo experiments. RESULTS: There were 444 targets obtained from the 39 active ingredients in Curcumae Rhizoma, and 5691 disease targets related to MF were identified. Then, 41 key targets were determined with the PPI interaction network, which was structured from 324 overlapping gene targets. GO and KEGG analyses revealed that the p38 MAPK/NF-κB and TGF-ß1/Smad2/3 signaling pathways might play crucial roles in the therapeutic mechanism of MF. According to the results of molecular docking, the binding activity between core components and targets was marvelous (affinity < -6 kcal/mol). Take it a step further, the experimental validation data affirmed that Curcumae Rhizoma substantially decreased myocardial fibrosis and recovered cardiac function in the ISO-induced rats. The associated proteins expression data implied that the p38 MAPK/NF-κB and TGF-ß1/Smad2/3 pathways might be vital in the anti-fibrosis effect of Curcumae Rhizoma. CONCLUSION: The findings suggested that Curcumae Rhizoma diminished myocardial fibrosis by suppressing fibrosis multiplication and collagen deposition through inhibiting p38 MAPK/NF-κB and TGF-ß1/Smad2/3 pathways, which might be a promising therapeutic medicament for alleviating myocardial fibrosis.


Assuntos
Medicamentos de Ervas Chinesas , Fator de Crescimento Transformador beta1 , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fibrose , Simulação de Acoplamento Molecular , NF-kappa B , Farmacologia em Rede , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno
14.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-970543

RESUMO

This study aims to investigate the effect of Astragali Radix-Curcumae Rhizoma(AC) combination on the proliferation, migration, and invasion of colon cancer HT-29 cells based on epithelial-mesenchymal transition(EMT). HT-29 cells were respectively treated with 0, 3, 6 and 12 g·kg~(-1) AC-containing serum for 48 h. The survival and growth of cells were measured by thiazole blue(MTT) colorimetry, and the proliferation, migration, and invasion of cells were detected by 5-ethynyl-2'-deoxyuridine(EdU) test and Transwell assay. Cell apoptosis was examined by flow cytometry. The BALB/c nude mouse model of subcutaneous colon cancer xenograft was established, and then model mice were classified into blank control group, 6 g·kg~(-1) AC group, and 12 g·kg~(-1) AC group. The tumor weight and volume of mice were recorded, and the histopathological morphology of the tumor was observed based on hematoxylin-eosin(HE) staining. The expression of apoptosis-associated proteins B-cell lymphoma-2-associated X protein(Bax), cysteine-aspartic acid protease-3(caspase-3), and cleaved caspase-3, and EMT-associated proteins E-cadherin, MMP9, MMP2 and vimentin in HT-29 cells and mouse tumor tissues after the treatment of AC was determined by Western blot. The results showed that cell survival rate and the number of cells at proliferation stage decreased compared with those in the blank control group. The number of migrating and invading cells reduced and the number of apoptotic cells increased in the administration groups compared with those in the blank control group. As for the in vivo experiment, compared with the blank control group, the administration groups had small tumors with low mass and shrinkage of cells and karyopycnosis in the tumor tissue, indicating that the AC combination may improve EMT. In addition, the expression of Bcl2 and E-cadherin increased and the expression of Bax, caspase-3, cleaved caspase-3, MMP9, MMP2, and vimentin decreased in HT-29 cells and tumor tissues in each administration group. In summary, the AC combination can significantly inhibit the proliferation, invasion, migration, and EMT of HT-29 cells in vivo and in vitro and promote the apoptosis of colon cancer cells.


Assuntos
Humanos , Animais , Camundongos , Caspase 3 , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Vimentina , Células HT29 , Proteína X Associada a bcl-2 , Neoplasias do Colo , Proliferação de Células
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-981456

RESUMO

Based on the Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3) signaling pathway, this study investigated the effect of medicated serum of Sparganii Rhizoma(SR) and Curcumae Rhizoma(CR) on the proliferation, apoptosis, migration, and secretion of inflammatory factors of ectopic endometrial stromal cells(ESCs). Specifically, human ESCs were primary-cultured. The effect of different concentration(5%, 10%, 20%) of SR-, CR-, and SR-CR combination-medicated serum, and AG490 solution(50 μmol·L~(-1)) on the proliferation of ESCs was detected by methyl thiazolyl tetrazolium(MTT) assay, and the optimal dose was selected accordingly for further experiment. The cells were classified into normal serum(NS) group, SR group(10%), CR group(10%), combination(CM) group(10%), and AG490 group. The apoptosis level of ESCs was detected by flow cytometry, and the migration ability was examined by wound healing assay. The secretion of interleukin(IL)-1β, IL-6, and tumor necrosis factor(TNF)-α was determined by enzyme-linked immunosorbent assay(ELISA). The protein levels of cysteinyl aspartate specific protei-nase-3(caspase-3), B-cell lymphoma(Bcl-2), and Bcl-2-associated X protein(Bax) and the levels of phosphorylated(p)-JAK2 and p-STAT3 were detected by Western blot. The results showed that the viability of ESCs cells was lowered in the administration groups compared with the blank serum group(P<0.01), especially the 10% drug-medicated serum, which was selected for further experiment. The 10% SR-medicated serum, 10% CR-medicated serum, and 10% CM-medicated serum could increase the apoptosis rate(P<0.01), up-regulate the protein expression of caspase-3 and Bax in cells(P<0.05 or P<0.01), down-regulate the expression of Bcl-2(P<0.01), decrease the cell migration rate(P<0.05 or P<0.01), and reduce the secretion levels of IL-1β, IL-6, and TNF-α(P<0.05 or P<0.01), and levels of p-JAK2 and p-STAT3(P<0.05 or P<0.01). Compared with the SR and CR groups, CM group showed low cell viability(P<0.01), high protein expression of caspase-3 and Bax(P<0.05 or P<0.01), and low protein expression of Bcl-2 and p-JAK2(P<0.05). After incubation with CM, the apoptosis rate was higher(P<0.05) and the migration rate was lower(P<0.01) than that of the CR group. The p-STAT3 protein level of CM group was lower than that of the RS group(P<0.05). The mechanism of SR, CR, and the combination underlying the improvement of endometriosis may be that they blocked JAK2/STAT3 signaling pathway, inhibited ESC proliferation, promoted apoptosis, weakened cell migration, and reduced the secretion of inflammatory factors. The effect of the combination was better than that of RS alone and CR alone.


Assuntos
Feminino , Humanos , Janus Quinase 2 , Caspase 3 , Proteína X Associada a bcl-2 , Interleucina-6/genética , Apoptose , Transdução de Sinais , Proliferação de Células , Fator de Transcrição STAT3/genética
16.
Front Pharmacol ; 13: 1027687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561345

RESUMO

Objective: Curcumae Rhizoma-Sparganii Rhizoma (CR-SR) is a traditional botanical drug pair that can promote blood circulation, remove blood stasis, and treat tumors in clinics. The aim of the present study was to investigate the therapeutic material basis and potential mechanisms of CR-SR, CR, and SR for the treatment of liver cancer. Method: The chemical profile analyses of CR-SR, CR, and SR were performed by molecular networking and UPLC-LTQ-Orbitrap MSn. The anti-liver cancer activities of CR-SR, CR, and SR were assessed by using a zebrafish xenograft model in vivo for the first time and detected by the HepG2 cell model in vitro. Combining the network analysis and molecular docking, real-time quantitative polymerase chain reaction (RT-qPCR) experiments were undertaken to further explore the mechanisms of CR-SR, CR, and SR for the treatment of liver cancer. Results: In total, 65 components were identified in CR-SR, CR, and SR. Based on the clusters of molecular networking, a total of 12 novel diarylheptanoids were identified from CR-SR and CR. By combining our results with information from the literature, 32 sesquiterpenoids and 21 cyclic dipeptides were identified from CR-SR, CR, and SR. The anti-liver cancer activities were observed in both the drug pair and the single botanical drugs in vitro and in vivo, and the order of activity was CR-SR > CR > SR. They could downregulate the expression of proto-oncogene tyrosine-protein kinase Src (SRC), epidermal growth factor receptor (EGFR), estrogen receptor-α (ESR1), prostaglandin endoperoxide synthase 2 (PTGS2), and amyloid precursor protein (APP). Conclusion: Taken together, the present study provided an experimental basis for the therapeutic material basis and potential molecular mechanisms of CR-SR, CR, and SR. This study provided a novel insight for objective clinical treatment of liver cancer.

17.
Chin Herb Med ; 14(4): 479-493, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36405057

RESUMO

Zedoary tumeric (Curcumae Rhizoma, Ezhu in Chinese) has a long history of application and has great potential in the treatment of liver cancer. The antiliver cancer effect of zedoary tumeric depends on the combined action of multiple pharmacodynamic substances. In order to clarify the specific mechanism of zedoary tumeric against liver cancer, this paper first analyzes the mechanism of its single pharmacodynamic substance against liver cancer, and then verifies the joint anti liver cancer mechanism of its "pharmacodynamic group". By searching the research on the antihepatoma effect of active components of zedoary tumeric in recent years, we found that pharmacodynamic substances, including curcumol, zedoarondiol, curcumenol, curzerenone, curdione, curcumin, germacrone, ß-elemene, can act on multi-target and multi-channel to play an antihepatoma role. For example, curcumin can regulate miR, GLO1, CD133, VEGF, YAP, LIN28B, GPR81, HCAR-1, P53 and PI3K/Akt/mTOR, HSP70/TLR4 and NF-κB. Wnt/TGF/EMT, Nrf2/Keap1, JAK/STAT and other pathways play an antihepatoma role. Network pharmacological analysis showed that the core targets of the "pharmacodynamic group" for anti-life cancer are AKT1, EGFR, MAPK8, etc, and the core pathways are neuroactive live receiver interaction, nitrogen metabolism, HIF-1 signaling pathway, etc. At the same time, by comparing and analyzing the relationship between the specific mechanisms of pharmacodynamic substance and "pharmacodynamic group", it is found that they have great reference significance in target, pathway, biological function, determination of core pharmacodynamic components, formation of core target protein interaction, in-depth research of single pharmacodynamic substance, increasing curative effect and so on. By analyzing the internal mechanism of zedoary tumeric pharmacodynamic substance and "pharmacodynamic group" in the treatment of liver cancer, this paper intends to provide some ideas and references for the deeper pharmacological research of zedoary tumeric and the relationship between pharmacodynamic substance and "pharmacodynamic group".

18.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3270-3284, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35851121

RESUMO

Coronary heart disease(CHD) is a common cardiovascular disease in clinical practice. Curcumae Rhizoma(CR), an important herbal medicine for breaking blood stasis and resolving mass, is often used for the treatment of CHD caused by blood stasis syndrome. However, the anti-CHD components, targets, and mechanism are still unclear. Therefore, in this study, the chemical components of CR were separated and identified by ultra high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS). Based on the identified components, network pharmacology analysis, including target prediction and functional enrichment, was applied to screen out the main active components against CHD, and the potential mechanism was discussed. Finally, molecular docking was performed to verify the binding between the active components and the targets. The results showed that among the 52 chemical components identified in CR, 28 were related to CHD, involving 75 core targets. The core components included(4S)-4-hydroxy-gweicurculactone, curcumadione, and curcumenone, and the core targets included phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha(PIK3 CA), mitogen-activated protein kinase 1(MAPK1), and mitogen-activated protein kinase 3(MAPK3). In summary, through the active components, such as(4S)-4-hydroxy-gweicurculactone, curcumadione, and curcumenone, CR regulates the nerve repair, vasoconstriction, lipid metabolism, and inflammatory response, thereby exerts therapeutic effect on CHD.


Assuntos
Doença das Coronárias , Medicamentos de Ervas Chinesas , Doença das Coronárias/tratamento farmacológico , Curcuma/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem
19.
Phytomedicine ; 102: 154090, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35580439

RESUMO

BACKGROUND: Hepatobiliary disease currently serves as an urgent health issue in public due to health-modulating factors such as extension of life expectancy, increasingly sedentary lifestyles and over-nutrition. A definite treatment remains lacking owing to different stages of the disease itself and its intricate pathogenesis. Traditional Chinese medicine (TCM) has been gradually popularized in clinic with the satisfactory efficacy and good safety. Curcumae Rhizoma (called E Zhu, EZ in Chinese) is a representative herb, which has been used to treat hepatobiliary disease for thousands of years. PURPOSE: To systematically summarize the recent research advances on the pharmacological activities of EZ and its constituents, explain the underlying mechanisms of preventing and treating hepatobiliary diseases, and assess the shortcomings of existing work. Besides, ethnopharmacology, phytochemicals, and toxicology of EZ have been researched. METHODS: The information about EZ was collected from various sources including classic books about Chinese herbal medicine, and scientific databases including Web of Science, PubMed, ScienceDirect, Springer, ACS, SCOPUS, CNKI, CSTJ, and WANFANG using keywords given below and terms like pharmacological and phytochemical details of this plant. RESULTS: The chemical constituents isolated and identified from EZ, such as terpenoids including ß-elemene, furanodiene, germacrone, etc. and curcuminoids including curcumin, demethoxycurcumin, bisdemethoxycurcumin, etc. prove to have hepatoprotective effect, anti-liver fibrotic effect, anti-fatty liver effect, anti-liver neoplastic effect, and cholagogic effect through TGF-ß1/Smad, JNK1/2-ROS, NF-κB and other anti-inflammatory and antioxidant signaling pathways. Also, EZ is often combined with other Chinese herbs in the treatment of hepatobiliary diseases with good clinical efficacy and no obvious adverse reactions. CONCLUSION: It provides a preclinical basis for the efficacy of EZ as an effective therapeutic agent for the prevention and treatment of hepatobiliary diseases. Even so, the further studies still needed to alleviate hepatotoxicity and expand clinical application.


Assuntos
Doenças do Sistema Digestório , Medicamentos de Ervas Chinesas , Doenças do Sistema Digestório/induzido quimicamente , Doenças do Sistema Digestório/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Etnofarmacologia , Humanos , Medicina Tradicional Chinesa , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Rizoma
20.
Front Oncol ; 12: 854596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433443

RESUMO

Background: Hedysarum Multijugum Maxim-Curcumae Rhizoma (HMMCR), a well-known herb pair in traditional Chinese medicine (TCM), has been widely used for the treatment of various cancers. However, the active components of HMMCR and the underlying mechanism of HMMCR for non-small-cell lung carcinoma (NSCLC) remain unclear. Methods: Active ingredients of HMMCR were detected by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). On this basis, potential targets of HMMCR were obtained from SwissTargetPrediction database. NSCLC-related targets were collected from four public databases (GeneCards, OMIM, TTD, and PharmGkb). The drug ingredients-disease targets network was visualized. The hub targets between HMMCR and NSCLC were further analyzed by protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Subsequently, the results predicted by network pharmacology were further validated via in vitro experiments. Results: A total of 181 compounds were identified from the aqueous extract of HMMCR. Through network analysis, a compound-target network including 153 active ingredients of HMMCR and 756 HMMCR-NSCLC co-targets was conducted; 6 crucial compounds and 62 hub targets were further identified. The results of KEGG enrichment analysis showed that PI3K/Akt signaling pathway may be the critical pathway of HMMCR in the treatment of NSCLC. The in vitro experiments indicated that HMMCR inhibits the proliferation and migration of NSCLC cells via inactivation of the PI3K/Akt signaling pathway, consistent with the results predicted by network pharmacology. Conclusion: Integrating LC-ESI-MS/MS, network pharmacology approach, and in vitro experiments, this study shows that HMMCR has vital therapeutic effect on NSCLC through multi-compound, multi-target, and multi-pathway, which provides a rationale for using HMMCR for the treatment of NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...